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The origins of Knot Theory

Atoms are Knots in Ether!

Vortex lines in fluids are stable!

They are stable and take many forms.
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Knots and periodic table of elements
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Two Dimensional Manifolds



Three Dimensional Manifolds?



Dehn Surgery
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Knot Invariants
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Knot Invariants
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K ~ K’

W(K) = W(K’)



Knot Invariants
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W(K) = W(K’)

K ~ K’

?



Jones Polynomial

Kauffman Polynomial



Kauffman Bracket ~ Jones Polynomial
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Kauffman Bracket ~ Jones Polynomial
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= a + a -1

Opening each crossing Two simpler diagrams



2N    Crossings

A computationally Hard Problem



Quantum Field Theory and the Jones Polynomial

Z = dAeiS∫

WK = dAWK [A]e
iS∫ S = d 3x  Tr A∧ dA + 2

3
A∧ A∧ A⎡

⎣⎢
⎤
⎦⎥∫



Michael Freedman, Microsoft Station Q

University of California, Santa Barbara

Alexi Kitaev,

Caltech

Topological Quantum Computation

Error Free Quantum Computation
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An excitation ( a quasi particle) which is not topological

You flip the spin by a local operator and the excitation is removed!

Spins in Ising Model



An excitation ( a quasi particle) which is topological

You cannot remove the excitation by local operations.flip the spin by a local 
operator and the excitation is removed!



An excitation ( a quasi-particle) which is topological.

Topology protects the excitation.

a

b

c

d

a b
c

d a



Winding number = q = 1
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ϕ : S1 ⟶ S1

ϕ : Space ⟶ Spin



An excitation ( a quasi-particle) which is topological.

Topology protects the excitation.
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Winding number = q = -1
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ϕ : Space ⟶ Spin



Quasi particles have charge!

Anyon with charge q=1



Anyon with charge q=1



The basic principles
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1- There are many body systems whose 

ground states have topological charge



2-The degeneracy of the ground state 

depends on the number of these particles. 

The higher the number of charges The higher the degeneracy

g1 , g2 , g3 ,....... gN



3-The system has a gap. 

We always stay in the ground space.



q = 1 + (−1) = 0

Combination of topological charges



Fibonacci Anyons 0  and  1

0

1×1= 11×1= 0

1×1= 0 +1

1

Example:

By two  Fibonacci Anyons, we cannot  make a qubit

since their total charge will be different and so we cannot 


make linear superposition of them



By three Fibonacci Anyons, we can make a qubit
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With three Fibonacci anyons with total charge zero,

 we cannot make a qubit.

Here is there  is no degeneracy.
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With three Fibonacci anyons with total charge one,

 we can make a qubit.

Here is there  is degeneracy.
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The ground state with n Fibonacci anyons 

with total charge 1, has a degeneracy given by


φ n

φ = 5 +1
2

ϕ = quantum dimension



1n = an 0 + bn 1

1n+1 = an 0 × 1 + bn 1 × 1

= an 1 + bn (0 + 1)

= bn 0 + (an + bn) 1



an+1 = bn

bn+1 = an + bn

(an+1

bn+1) = (0 1
1 1) (an

bn)

bn ∼ ϕn
+

ϕ± =
1 ± 5

2
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Can we really think of these

1
1

1

as qubits

|0⟩ |1⟩and

?



For example, what are the following?

1
1

0 1
1

1

Answer: They should be linear combinations of the 
previous ones.
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Consistency Conditions
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5-Consistency Relations?



Braiding
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We can do this in two different ways.

?



 The charges obey certain fusion and braiding rules.
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The braiding matrix



It is not so simple!
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It is not so simple!
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σ 1 σ 2= R = FRF

Quantum Gates



σ 1 σ 2= R = FRF= Rz (
3π
10
) = Rn (θ )
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Two qubit gate

Control Gate
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With one qubit gate and a control two qubit gate, 

we can do universal quantum computation.



With one qubit gate and a control two qubit gate, 

we can do universal quantum computation.
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End of part II
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